【数据挖掘】使用R语言进行聚类分析

本文介绍了如何在R语言中使用k-means和K-Medoids进行聚类分析,包括算法原理、示例及优缺点分析。通过实例展示了在iris数据集上的应用,并探讨了层次聚类(HC)和基于密度的聚类(如DBSCAN)。
摘要由CSDN通过智能技术生成

本文主要介绍在R语言中使用k-means和K-Medoids进行聚类分析的方法。

一、首先介绍下聚类分析中主要的算法:

l  K-均值聚类(K-Means   十大经典算法

l  K-中心点聚类(K-Medoids)

l  密度聚类(DBSCAN)

l  系谱聚类(HC)

l  期望最大化聚类(EM   十大经典算法

聚类算法

软件包

主要函数

K-means

stats

kmeans()

K-Medoids

cluster

pam()

系谱聚类(HC)

stats

hclust(), cutree(), rec

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值